

COMITE SCIENTIFIQUE

Présentation de SMART PV4EV 25 avril 2025

Données du projet

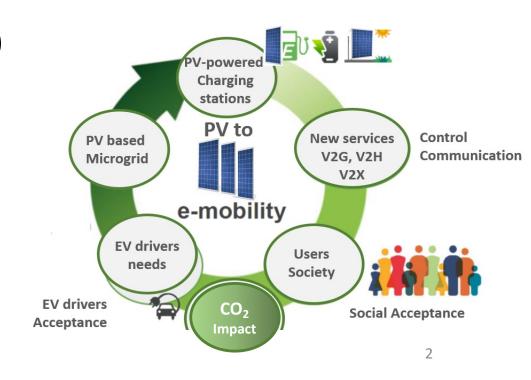
Nom du projet :

SMARTPV4EV : Pilotage intelligent et évaluation technico-économique-environnementale des stations de recharge alimentées par des sources photovoltaïques (IIRVE) (2021-2024)

SMART_PV4EV_2 : Pilotage intelligent et dimensionnement technico-économique environnemental des IIRVE (2023-2025)

Nom du porteur : Manuela SECHILARIU (UTC, Avenues)

Partenaires impliqués :

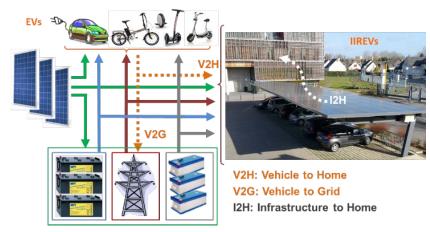

Laboratoires GE: Avenues

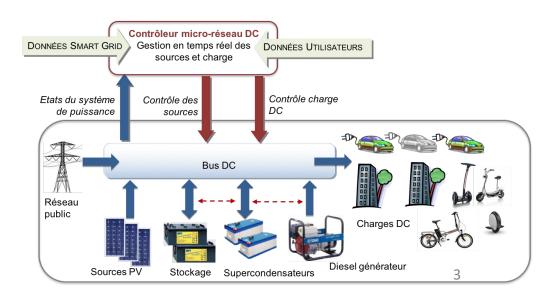
Laboratoires hors GE: Costech

Autres partenaires:

Subventions: 2021: 166 800€ **2022:** 55 200€

2023 : 127 800€


Etat de l'art

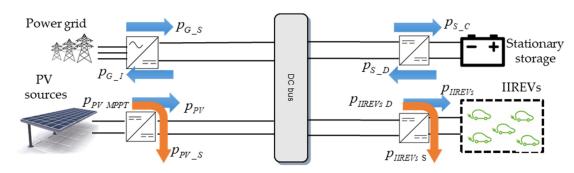

- Impact négatif des IIRVE sur la qualité de l'énergie du réseau
 - Incertitudes liées à la production PV intermittente et à la demande de recharge de VE
- Défi important : gestion dynamique des IIRVE
 - Minimiser les coûts énergétiques, maximiser l'utilisation de l'énergie PV, tout en respectant les demandes d'énergie individuelles des VE et les contraintes de recharge
 - Prendre en compte l'analyse des impacts sociaux, comportementaux, économiques et environnementaux, ainsi que sur la durabilité des IIRVE
- Verrous scientifiques, technologiques et sociétaux
 - Optimisation énergétique en « temps réel » et maitrise des incertitudes
 - Interfaces communicantes pour diverses échelles
 - Modélisation sociale, impact sociétal, acceptabilité

→ Avenues - UTC

- Méthodologies de gestion dynamique optimisée d'énergie
 - Calcul et prise de décision en " temps réel"
 - Flux important de données, potentiellement incomplètes
 - Incertitudes d'évolution du système au cours du temps
 - Contrôle intelligent pour une recherche de solutions optimales
 - Algorithmes discrets et continus de commande
- Méthodes de co-conception sur durée de vie
 - Robustes sous incertitudes
 - Contexte technico-économique et environnemental
- Validation expérimentales des concepts et algorithmes

Exemple d'IIRVE

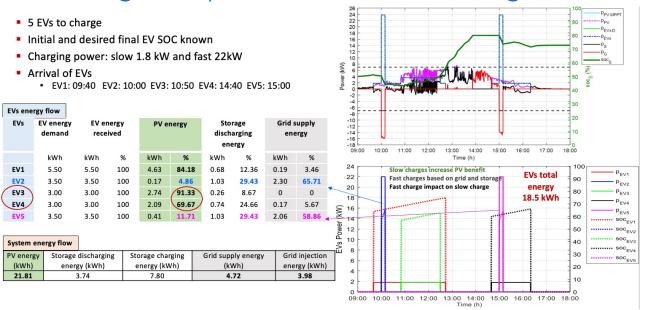
Objectifs

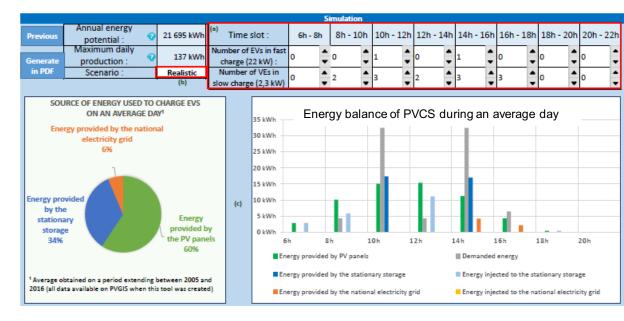

○ Objectif 1

- Augmenter la performance énergétique des IIRVE par l'optimisation des flux de puissances en temps réel et la maîtrise des incertitudes
- Augmenter les bénéfices de l'énergie PV
- Réduire l'impact environnemental
- Etudier l'acceptabilité sociale des IIRVE (collaboration SHS avec Costech UTC)

Objectif 2

- Concevoir un dimensionnement optimisé sous contraintes technico économiques et environnementales des IIRVE
- Concevoir une méthodologie de co-optimisation du dimensionnement et de la gestion d'énergie en minimisant les coûts des composants au sein de l'IIRVE

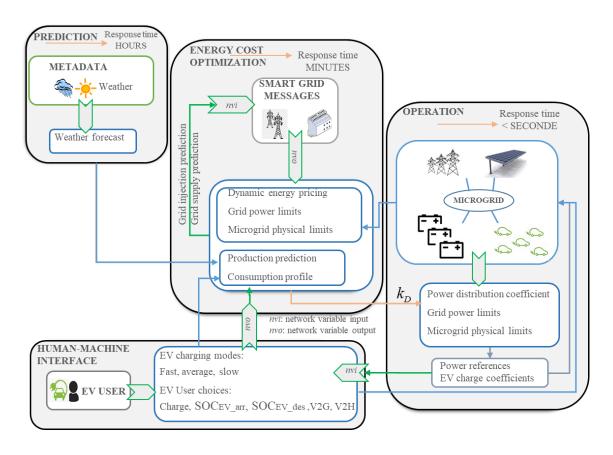




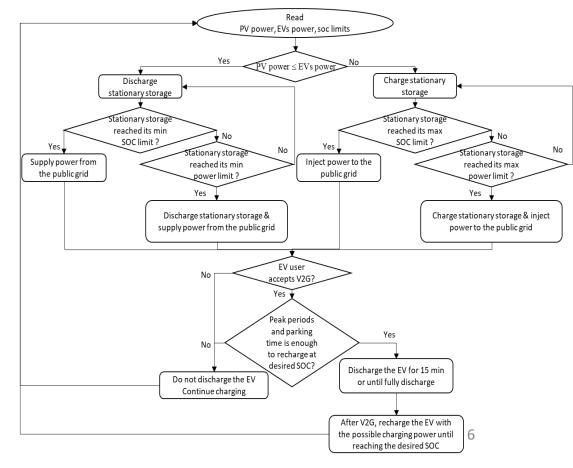
Méthodologies de gestion dynamique optimisée d'énergie permettant le calcul et la prise de décision "en temps réel"

Exigences préliminaires pour augmenter les avantages PV pour les stations de charge IIRVE

Exemple d'évaluation des avantages PV pour les IIRVE selon un scénario réaliste


Pour un trajet urbain/périurbain quotidien moyen de 20 à 40 km, les avantages du photovoltaïque augmentent si

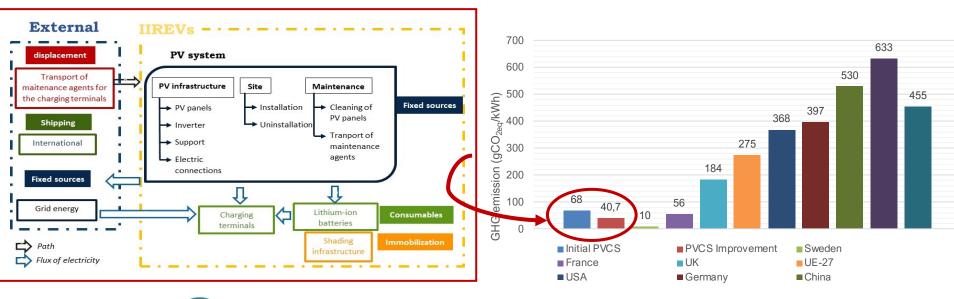
- Recharge quotidienne plutôt qu'hebdomadaire
- Mode de recharge lente plutôt que rapide
- Puissance variable plutôt qu'une puissance constante

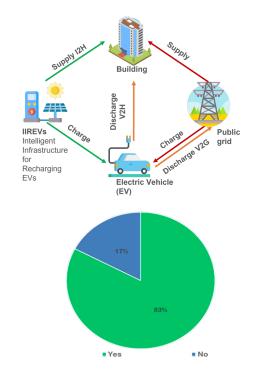


Méthodologies de gestion dynamique optimisée d'énergie permettant le calcul et la prise de décision "en temps réel"

Optimisation technico-économique des IIRVE

Développement d'algorithmes d'optimisation

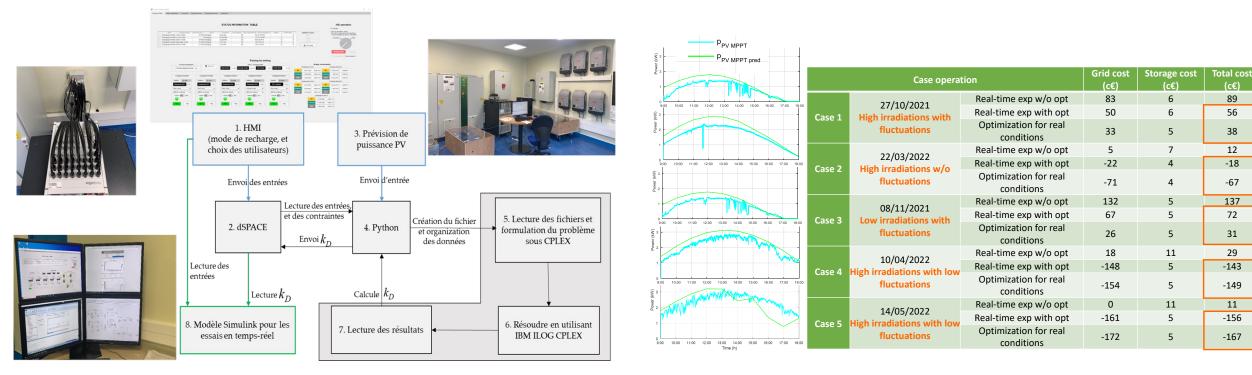




Méthodologies de gestion dynamique optimisée d'énergie permettant le calcul et la prise de décision "en temps réel"

Comparaison impact CO₂ entre IIRVE, soit PVCS, et station alimentée par le réseau

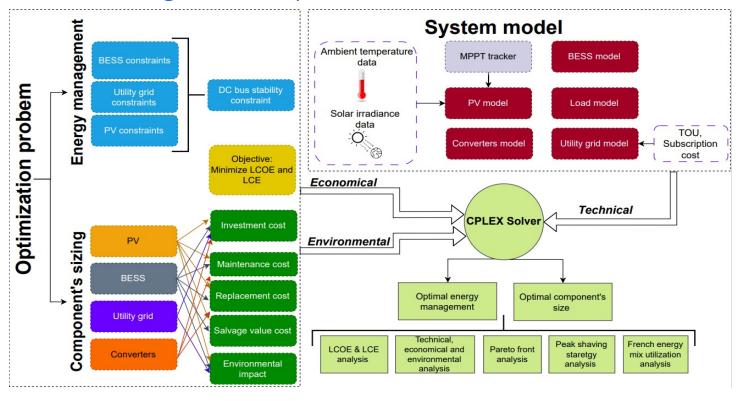
Acceptabilité sociale et des IIRVE et V2G, V2H et I2H



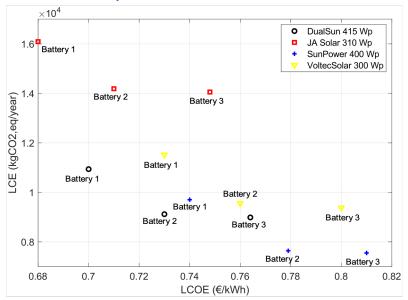
Méthodologies de gestion dynamique optimisée d'énergie permettant le calcul et la prise de décision "en temps réel"

Validation expérimentale par l'interface homme-machine

Exemple de résultats



- Publications: 5 ACL, 6 CICL
- Projets: T_IPV (ADEME) et IEA PVPS Task 17 Transport & PV
- Thèse: 3º année S. Cheikh-Mohamad, "Modeling and design of a photovoltaic infrastructure based on a microgrid and dedicated to electromobility"


Méthodologie de co-optimisation du dimensionnement et de la gestion d'énergie en minimisant les coûts des composants au sein de l'IIRVE

Méthodologie de co-optimisation

- Publications : 2 ACL, 3 CICL
- Projets: T_IPV (ADEME) et IEA PVPS Task 17 Transport & PV
- Thèse : 2^e et 3^e année F. AGHA KASSAB, "Co-optimisation du dimensionnement et du contrôle d'un micro-réseau urbain".

Exemple du résultat

Travaux en cours : pilotage intelligent avec limitation de la puissance de charge en fonction de l'irradiation solaire (algorithme de contrôle et de gestion d'énergie)

Plateforme / Equipements acquis

Validation expérimentale réalisée sur la plateforme STELLA

Station de pilotage et contrôle temps réel (2021)Armoires électronique

de puissance (2021)

DC Load

Emulator 12kW

Building Connection

Inverters for Building Connection FRONIUS

Li-ion storage 7.2kWh; 48V/150Ah

Supercapacitors 0.294kWh; 300V/23,5F

SYMO 3.7kW

Lead-acid storage 17.8kWh; 96V/185Ah

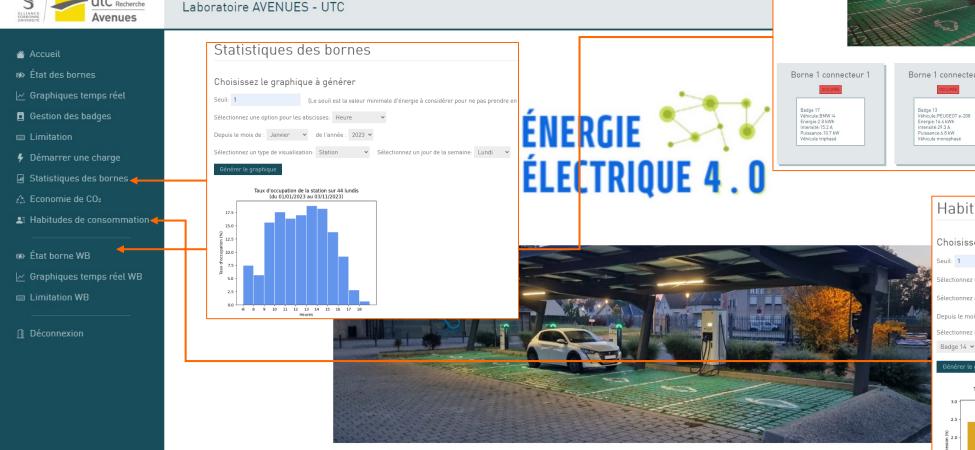
> Bornes de recharge des véhicules électriques (2021)

Stockage électrostatique et électrochimique (2023)

Plateforme / Equipements acquis

Living Lab STELLA

Relever le challenge de la transition énergétique


Gestion des badges

adges existants			
Badge 01	Badge 02	Badge 03	Badge 04
Tag 04BA08326D7084 Valide 0ui Marque RENAULT Modèle Zoe Modifier	Valtide Oui Marque BMW Modèle 13 ✓ Modifier	Tag 04484026C7081 Valide Oui Marque RENAULT Modèle Twingo E-Tech	Tag 049948D26C7084 Valide 0ui Marque RENAULT Modèle Zoe
Badge 05	Badge 06	Badge 07	Badge 08
Tag 04D58CD26C7080 Valide 0ui Marque SEAT Modèle MII	Tag 04C914D26C7084 Valide Oui Marque RENAULT Modèle Zoe	Tag 044C0B326D7085 Valide Oui Marque MG Modète MG4 Modifier	Tag 045108326D7085 Valide Oui Marque RENAULT Modèle Zoe ✓ Modifie
Badge 09	Badge 10	Badge 11	Badge 12
Tag 047C05326D7084 Valide Oui Marque RENAULT Modèle Zoe	Tag 0479A0CA936980 Valide Oui Marque MG Modèle MG5LR	Tag 04B93BCA936984 Valide Oui Marque TESLA Modèle Model Y	Tag 042470CA936980 Valide 0ui Marque RENAULT Modèle Zoe

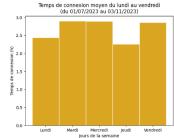
Plateforme / Equipements acquis

Living Lab STELLA

Relever le challenge de la transition énergétique

Intégration des sources renouvelables, transformation du parc automobile, optimisation des consommations par les réseaux intelligents : l'é de demain sera avant tout électrique! La recherche en Génie Électrique est un élément clé pour la réussite de cette transition.

Etat des bornes



Habitudes de consommation par utilisateur

Choisissez le graphique à générer

Sélectionnez un numéro de badge

Retombées

**Retombées scientifiques


- Publications: 7 ACL, 9 CICL
- Actions structurantes entre laboratoires de la région : Costech (UTC)
- Nouveaux projets
 - T-IPV 2023-2025 (Ademe)
 - Task 17 PV & Transport (IEA PVPS)
- Thèses (contrat doctoral)
 - 3^e année 2021-2022) et
 - 2^e 3^e année 2022-2024
- Diffusion de la science
 - Fête de la Science
 - Nuit de la Recherche
 - Actions de communication et de vulgarisation

**Retombées économiques

- Ensemble de méthodologies de dimensionnement, de gestion et de services associés d'IIRVE
- Ensemble d'outils d'évaluation d'efficacité des IIRVE
- Ensemble d'outils d'aide à la décision à destination des collectivités et autres parties prenantes apportent un appui aux acteurs territoriaux pour favoriser l'émergence des IIRVE

Merci pour votre attention

SMARTPV4EV -> manuela.sechilariu@utc.fr

