

Plateforme d'intégration

ÉNERGIE **ELECTRIQUE 4.0**

Plateforme d'exécution temps réel SPHEREA

Equipement acheté pour l'exécution rapide d'algorithmes et la vérification expérimentale de travaux scientifiques

Positionnement CPER:

- * Passer d'un TRL 3 (preuve du concept) à un TRL 6 (démonstration dans un environnement réel simulé)
- * Outils de communication pour envisager des transferts industriels

PostDoc : Réza RAZI Investissement : OP5600 REAL-TIME TIME SIMULATOR * OPAL-RTLinux 3.x OS with Real-Time Kernel * 01/03/2023 - 31/08/2024 * Missions : Mise en oeuvre des matériels * RT-LAB Host/Workstation License * Intel C++ compiler for Linux Développement des applications expérimentales Contrat de Plan eaion État-Région auts-de-France **Personnels impliqués:** Liberté • Égalité • Fraternite Bruno FRANCOIS (Centrale Lille), Frédéric COLAS (ENSAM) **RÉPUBLIQUE FRANÇAISE**

Autonomous EVs scheduling Thèse de Haider ALI

(I-Site Appel multidiscplinaire INRIA-L2EP)

ANN based estimator of the power system State A Thèse Mohamad EL IAALI (50% Centrale Lille + PolyTech Porto) (

ANN for Fast Power Reserve Provision Antonella TANNOUS

(50% ANR IA for engineering + Région HdF)

3

Real-time (RT) simulation (PHIL & Digital Twin)

Why is it essential?

ELECTRIQUE 4

Direct implementation of new approaches into a physical system is Costly & Risky

Digital twin technology:

Creation of a virtual replica of the system under examination

- Assessment of technical constraints
- Estimation of environmental impacts
- Generally, explore "what if" questions

Prerequisites:

- Data collection and record archiving
- Studied system visualization (SCADA)
- Real-time operational configuration (RT computers)

- Hardware Devices Digital **Under Test Real-time Simulator** PHIL Amplifier Measuremen Wind Motors Farms imulation Mode System Protection & Control ontrolle Controller 101 Relay
- > Mastering computing hardware and RT software
- ➤ Interconnections between the replica and physical hardware
- Accommodation for modifications

ÉNERGIE SPHEREA (U-TEST software) simulator

What is SPHEREA? Why are we using it?

SPHEREA simulator: fast computational units, accurate data processing, efficient communication systems

U-test software's key features : user-centric, real-time Linux environment, running Python code

Famous simulator and used in many companies

U-TEST

AIRBUS ASML

Formation at L2EP-ENSAM du 23/05/2023 au 26/05/2023

ÉNERGIE Opal-RT simulator

What is Opal-RT? Benefits of combining two simulators?

OP5600 OPAL-RT simulator: real-time operating system (Linux) and great computation power capability through 12 CPU cores 3.46 GHz.

Suitable for modeling in real time power systems Both powerful real-time simulators are employed Each simulator is used as an independent entity They are connected together through suitable communication links

Application 1 : Autonomous EVs one day-ahead scheduling

Electric Vehicles

- ✓ Cleaner environment
- ✓ Reduced operating costs
- \checkmark Diminished noise pollution

Shared autonomous EV

- ✓ Minimize mobility investments
- ✓ Mitigate accident risks
- ✓ Fortify existing transit systems

Holistic optimization

- 1. Transport optimization: Minimize service time for passengers. research group: INOCS (INRIA)
- 1. Charging optimization: Schedule the charge (location, e-price, constraints in the power system, etc.).

Dual Digital twin-based platform

research group: RESEAUX (L2EP)

For efficient scheduling (vehicle routing), coordination (overall system performance), and charging of shared AEV fleets (charging infrastructure)

Application 1 : Autonomous EVs scheduling

Dual Digital Twin implementation

Digital twin: creating a virtual replica of a system, enabling real-time monitoring, analysis, and optimization.

Application 1 : Autonomous EVs scheduling

Geographic mapping of node's location on the SCADA (PCVUE)

ÉNERG

ÉLECTRIQUE 4.0

Coding of transportation nodes in Python

Day ahead scheduling of AEVs routing

Scenario	Requests	Total	Utilized	#Cons	#Vars	Travel Costs	Charging
-	-	AEVS	AEVS			(euros)	Costs (euros)
a-10	10	5	5	1492	780	148.8	1.48
a-14	14	5	5	2126	1105	308	12.358
a-18	18	5	-	-	-	-	-
u-18	18	10	10	5875	3050	391.5	6.068
u-24	24	10	-	-	-	-	-
y-24	24	50	15	13876	7155	555	8.066
y-28	28	50	16	58685	30200	720.82	12.649

Transportation optimization

- Dynamic nature of AEV demand
- Power grid conditions
- □ Charging infrastructure availability

Application 1 : Autonomous EVs scheduling

Transportation digital twin to play **one day ahead** optimal transportation scenarios

Power system digital twin to play **one day ahead** impacts on power flows

ÉNERGIE Application 2: ANN based estimator of the power system state

Integrating EVs is introducing more constraints (undervoltages, overcurents) in the distribution network How to monitor them **without** additional sensors and communication network ?

Challenge of comprehensive observability and control

Goal : Real Time monitoring

Develop an adapted state estimation method for electrical quantities that are not measured

Problems:

Unknown line/cable parameters Nonlinear models (ex Power flow) Fast computation with enough accuracy

Explored solution :

ANN based state estimator Physics informed ANN architecture Python algorithm in Spherea

Application 2: ANN based estimator of the power system state

First results in Off-line

ÉNERG

ÉLECTRIQUE 4.U

Création des bases de données à partir des mesures

Code Python + Librairie pour l'apprentissage

→ Implémenté sous Sphéréa

Application 2: ANN based estimator of the power system state

La suite : Passer en On-line (PolyTech Porto

Application 3 : ANN for Fast Power Reserve Provision

Challenge:

Intermittency and stochastic behaviour of renewable energy sources and load demand

Power **reserve** is essential for balancing the power system

Problems:

- * No CO₂ emissions for this balancing service -> battery storage
- * Anticipation of unbalancing to prior ESSS in the service provision -> use unbalancing sources as control inputs
- * Adaptation to variabilities in generation and load demand -> Self learning ANN based controller

Goal :

Developing and testing an adaptive control

Application 3 : ANN for Fast Power Reserve Provision

Application 3 : ANN for Fast Power Reserve Provision ÉLECTRIQUE 4.0

30 kW load transient at 20 seconds

ÉNERG

Event	Quantity	Droop controller	With adaptive method
1	Mass of CO ₂ [g]	697	679 <mark>(-2.6%)</mark>
	Cost [euros]	0.52	0.50 <mark>(-3.8%)</mark>
2	Mass of CO ₂ [g]	646	635 <mark>(-1.7%)</mark>
	Cost [euros]	0.48	0.47 <mark>(-2.1%)</mark>

Conclusion

Merci ! QUESTIONS ?

This work has been achieved within the framework of EE4.0 (Energie Electrique 4.0) project. EE4.0 is co-financed by European Union with the financial support of the European Regional Development Fund (ERDF), French State and the French Region of Hauts-de-France.

